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Explicit Expressions of the Reflection and Transmission
for Two Coupled Identical Exponential Lines M
line 1 > A7 T vy (2)
Sailing He !
z=0 coupling z=4
Abstract—The reflection and transmission problem of two coupled io (2) TV (2)
identical exponential lines is considered in this paper. The exact and line 2 >« 2
explicit expressions for the co- and cross-line reflection and transmission /"”/—'
coefficients are derived. The explicit expressions are validated by an

independent numerical solution. ) ) . ) L
o o ~ Fig. 1. Configuration for two coupled nonuniform transmission lines.
Index Terms—Coupled transmission lines, distributed parameter cir-

cuits, exponential destributions, scattering matrices.
position z, respectively. If the lines are lossless, all these parameters
have real values. If the lines are lossy (i.e., have nonzero shunt
conductance and/or resistance), then some of these parameters may
The analysis and various applications of exponential transmissiRfve complex values. Equation (1) is a first-order linear system of
lines (ETL’s) have been investigated in numerous articles [1]-{4}rdinary differential equations (ODE'’s) with inhomogeneous coeffi-
Coupled transmission lines have been of continuous interest fggnts. Generally speaking, a linear system of ODE's ithitrarily
both microwave and power engineering (see [5], [6]). In microwavghomogeneous coefficients cannot be solved explicitly. Note that the
engineering, coupled lines have been used as directional coupl@igiicit solution given by Nwoke in [9] for an arbitrarily nonuniform
phase shifters, filters, etc. Coupled nonuniform lines can offer a clagsnsmission line is not correct (as pointed out in [4] and [10], the
of ultrabroad-band components due to the nature of nonuniformityeorem presented in [9] is incorrect when the system of differential
and thus improve the performance. In power engineering, the cQiuations has varying coefficients, which Nwoke was not aware of).
pling between lines is, in general, nonuniform due to the complex|n, this paper, the case of two coupled identical ETL’s is considered,

. INTRODUCTION

geometries (see [7]). and thus [11]
Exact and explicit solutions for special cases are useful in in-
vestigating some possible applications, for the insight they provide, f(z) _ |:LL’0 LLmo}czqz
and as references in establishing benchmarks for general numerical 0 0
algorithms. In this paper, one derives the exact and closed-form Tle) = { Co _Cm0:|672q;, 0< sl 3)
solution for the reflection and transmission problem of two coupled i —Cho Co |7 7 '

identical exponential lines through a transformation. The eXp"(‘X%hereL
expressions for the co- and cross-line reflection and transmiss >
coefficients are then validated by a numerical solution.

Co, Lo, andC,o are constants, and the constaifivhich
'r%'&y be either positive or negative) defines the taper of the ETL'’s.
It is assumed that each line is connected to two uniform lossless

LC lines at the two ends, and one has
Il. PROBLEM FORMULATION

Consider two coupled transmission lines of finite lengbetween Li = Loo
z =0 andz =1 (see Fig. 1 for the configuration). The equations Cr = Coo
for the voltagevy (z) and current(z), £ = 1, 2, in the frequency- L, =Ch
?oma;g])are as follows [for a harmonic time dependesge (jwt)] -0, k=1,2, 2<0 4)
see :
Ly =L
(o8] _ (oM (3 i
d |vs . 0 L(2)] |va | _ v B Cr =Co
- . = —JW| = . = . —
dz |01 J C(z) 0 11 (51 L =Cn
iz iQ iQ :0, k= 1, 2, z > l. (5)
where Note that all the parameters may have discontinuities at the endpoint
= Li(z2) Lm(z):| = |: Ci(z) =Cn(z) z=0andz = [.
L(z) = , C(z)=
2 {Lm(;) Lo(2) O =1_c.(z)  Ca(2)
2 lIl. I NTERNAL VOLTAGES AND CURRENTS
and whereLi(z), Ck(z), k = 1,2, are, respectively, the self- In this section, a suitable transformation of variables is used which

inductance and self-capacitance per-unit length at the positioh transforms the system of ODE's for two coupled ETL’s to a simple
line k in the presence of the other line, ard, (=), C,.(z) are One with constant coefficients.

the mutual inductance and mutual capacitance per-unit length at thd he following transformation (which comes from the diagonaliza-

. ) ) _tion of the matrix D) are introduced:
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where The system (11) of ODE's (with constant coefficients) can be
P \/L +Ln. \/Lo T Lo 20 @ solved in a conventional way [12]. The final result is given as follows:
T C - 0777 - CO - C?n.(]
L’ - Lm LO - LmO 2 e o
7y = = 1% 8 2 R -
: \/c+c,,,, \/c0 T Como " ®) ;i (2) = e A(2) i; 0%, o0<z<1 (14)
Differentiating (6) with respect ta and using (1), yields l»; ;E;
2r1 --Tl
d |z 1 d 1] e where
- = |PDP — PP
dz |x3 |: + <d: ) :| 3 ©)
T4 Tq 1, A4
- Az) = {é‘ éz} (15)
where P! is the inverse ofP, i.e., Az As
1 1 1 17
1 -1 | and as shown in (16)—(20) at the bottom of the page.
pr_t|1 1 -1 -1 (10) Therefore, the internal voltages and currents are given by the
2 |z Zy 7 Zs following equation:
ot -t 1
Z1 ZQ Z1 ZQ = (O8] (o8]
After a matrlx calculation, one obtains the following system of '}_ﬁz (2) = e [P ()[A)[POT)] }_fz 0), 0< <l
equations: i1 )
&1 iz iz
dz |73
T4 IV. REFLECTION AND TRANSMISSION
TIE 4y 0 —q 0 It is assumed that the excitation voltage is from the left side of
€1 jw o the ETL'’s, i.e.,z < 0. The (right-moving) incident voltage;’<,
0 — + ¢ 0 —q - k=1, 2, and the (left-moving) reflected voltagé?, & = 1, 2, at
_ C2 -2 _ . N
= jw s z = 07 on thekth line are given by [13]
—q 0 —+q 0
C1 . &€r4 .
jw _inc
0 —q 0 o +4q Zilm- , T ,%I vy vy
al=5 P o=T |7 |0 @2
= 4, |* (11) ol N PR i :
- 3 7)§eﬂ Coo ‘2 ‘2
T4
where the constants wherel is the 2x 2 unit matrix. Since there is no left-moving wave
1 1 in the regionz > I, one has
c1 = = (12)
\/(L‘i‘L;n)(C—qu) \/(LO"FL?nO)(CO_Cm,O) .
1 1 Uy L . .
o= = . (13) . I CLO I||n o1
\/(L_Ln))(c'i'cvn) \/(LO_L'7n0)(CO+Cn7,O) U2 — 1 /10 U2 (l) — 17’ V2 (l) (23)
. ) . . 2 ) Ik
Note that the system (11) is a first-order linear system of ODE’s with 0 I - Lo I il zl
constantcoefficients. 0 Co 2 2
- W .
. cosh (A\1z) — j sinh (A1 2) 0
1= o v (16)
0 cosh (A2z) — 5 sinh (A22)
L a2
. _—)\i sinh (A12) 0
A, = ! g 17)
i 0 | ,_E sinh (A22)
. [cosh (A1z) + 7 J;\ sinh (A1 2) 0
A = e N (18)
0 cosh (Aaz) +j sinh (A22)
L (32)\2
2 ;uz 172
n= (%) (19)
ey
1/2
Ao = <q2 - 7) . (20)
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wherev}”, k = 1, 2, is the (right-moving) transmitted voltage at The reflection and transmission coefficient matrices are defined as

z = I on thekth line.
From (21)—(23) it follows that
UET viﬂ(‘
vh" 03"

= TP A POIT

refl
(2]

0 v];eﬂ

a
— ql
:Gq _

m

,jinc

v)

vye
v goﬁ

U;eﬂ

ST

(24)

where T, ! is the inverse ofl,, and @, b, i, and7 are 2 x 2

matrices. After a matrix calculation, one obtains

= 1 )= = Coo== = Llo:_1
r=-<¢eae ——casZ 2 =2, a
a 1 {0010-1— Loovaz o+ 2t 2

2|
|

Lio Coo\m_1= =
2 —_— — |Z Z
T <L00><Clo> L 0} (25)
= 1 )= Coo== = Lio=_1= =
b:z{eale— L—zzeazZo+2 C—;leazf
Ly Coo\=-1= =
-2 — — |Z Z 26
<L00><0m> L 0} (26)
— 1 == = COO == = Llo —1= =
=- Zo — 24/ 7z, " a-
m 4{(’(110—1— Loopaz 0 Cn | ase
Lio Coo\m_1= =
-2 —— — |7z Z
<L00><Clo> L 0} @7)
= 1 J=-== Coo== = Lios_1= =
n:z{eale— L—zzeaz 0 —2 O—[((;leaze
Ly Coo\mo-1= =
2 — — |Z : 2
+ <Loo><0m> L 0} (28)
where
_ o
Tl a1
= _ Z1 Z1 +
ZO - |:Z2 —Z2 (0 )
1L
:71_1 —2ql Z, Zs —+
Zi' = e Lo (29)
Zy  Zs
a =
lcosh (Ag1) — Ai sinh (A1) 0
1
0 cosh (Aal) — Ai sinh (\a])
L 2
(30)
[—i —— sinh (Ay]) 0
= )1>\1
az = )
0 —i sinh (A20)
L ca A2
(31)
az =
fcosh (M 1) + \i sinh (A17) 0
A
0 cosh (Aal) + Ai sinh (A2])
‘ (32)

usual in the following:

,Uroﬁ _ ,Uinc ,Utr _ Uinc
|: ;I'eﬂ =7 i]nc ? ]Lr =t :nc ) (33)
Vs Uy Uy Uy
It thus follows from (24) that
F=-u'm (34)
f=ct'@+0br) = e (@—-bn ). (35)

Equations (34) and (35) give the exact and explicit solution for
the reflection and transmission problem of two coupled identical
exponential lines [the 2« 2 matricesa, b, 7, and® are given by
(25)-(28)].

As expected from the symmetry of the two coupled identical lines,
the reflection and transmission matrices [given by the expressions
(34) and (35)] have the following form:

7'CO 7,CIOSS
{rCIOSS rCO }

teo  teross
whererc,, 7eross (teo, teross) @re co- and cross-line reflection (trans-
mission) coefficients, respectively. The physical interpretation of
these quantities is as follows:, (r.os<) IS the amplitude of the left-
moving reflected voltage at= 0~ on a line due to a unit amplitude
of right-moving incident voltage at = 0~ on the line (or the other
line) with the right-moving incident voltage on the other line put equal
to zero.t., andt..ss Can be interpreted similarly. These reflection
and transmission coefficients are plotted in Fig. 2, as functions of
the taper parametey (scaled by 1) when Cy = Ciy = Coo,
Cmo = ().SC(UU, Ly = SLOU, Ly = ().SL'(J(), Lo = 2L00, and
the frequencyw = 0.1/1v/LooCoo. As one can see from Fig. 2,
when |¢| becomes largejr.,| approaches to 1, anbciossl, [teol,
and |taoss| @approach to 0. The marks in Fig. 2(a) and (b) are the
corresponding co- and cross-line scattering coefficients obtained by
solving (numerically) the ODE's for the reflection-coefficient matrix
and the Green’s functions [14]. These marks are almost on the
curves in Fig. 2, which show that the explicit solution is consistent
with the numerical results obtained by solving the ODE's for the
reflection-coefficient matrix and the Green’s functions.

A Special Case:In a very special case whefi,./C = L,,/L
and the terminations are matched (i.€q0 = Lo, Coo = Co,
L = Loﬁiqu, and C[o = O(J@iqu), one hang = 1, Ao = )\1,

VZ1Zy = /Lo/Coe??*. Thus, (34) gives

Tco =

=~

(36)

11
I

(37)

Ai sinh (A1)

1

Z:(0h) Za(0F) | .
\/22(0+) + \/Zl(0+):| sinh (A1)

Z(0%) _ [Za(0%)
Z5(0%) Z1(01)
20%) | [z0M] '
\/Zg(()'*‘) + \/Z1(0+) sinh (A11)
As expected, wheiC,,, = L, = 0 [and thusZ, (0") = Z,(0™)]

the above-mentioned two equations show that.s = 0 andr., is
identical to the reflection coefficient for a single ETL [15].

W

cosh (A1) + ¢ 5o

Tcross =

w

i sinh (A1
1201/\1 sinh (A7)

w

C1A1

cosh (A1) +14 5
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Operation of New Type Field Displacement

-6 4 2 0 2 4 & Isolator in Ridged Waveguide

taper parameter q {

Fig. 2. The co- and cross-line reflection and transmission coefficients givéffen Junding, Wenquan Che, Yongzhong Xiong, and Yongwu Wen
by the explicit solutions (49) and (50) for two coupled identical exponential
lines with the parameter§y = C;o = Coo, Cmo = 0.5Co0, Lo = 3Loo,

Lijg = 0.8Loo, Lo = 2Loo and the frequency = 0.1/1v/LooCoo. The A
marks in the figure are the corresponding co- and cross-line scattering coeofﬂ
cients obtained by solving numerically the ODE’s for the reﬂection—coefﬁcierig
matrix and the Green’s functions.

bstract—A new type ridged-waveguide field-displacement isolator is
alyzed in this paper. Experimental results have been obtained for the
olation, insert loss, and voltage standing wave ratio (VSWR) irC- and
X-band. The isolation and bandwidth are found to increase obviously.

V. CONCLUSION Index Terms—isolator, ridged waveguide.

The exact and explicit expressions for the co- and cross-line
reflection and transmission coefficients for two coupled identical |. INTRODUCTION
exponential lines have been derived. The explicit expressions hav
been validated by a numerical solution based on the wave-splitti
technique.

fn 1960, Chen [1] proposed the experimental results of resonating
[Blator and field displacement isolator in a single ridged waveguide.
He got useful results of the resonating isolator. As to the field
displacement isolator, his experiments were failures. He found “the
forward loss of the field displacement isolator in single ridged wave-
[1] R. N. Ghose, “Exponential transmission lines as resonators a@dlide became nearly identical with the reverse loss, nonreciprocal
transformers,”IRE Trans. Microwave Theory Techupl. MTT-5, pp.  effect was not distinct. Take out the resistance sheet, nonreciprocality
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