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Explicit Expressions of the Reflection and Transmission
for Two Coupled Identical Exponential Lines

Sailing He

Abstract—The reflection and transmission problem of two coupled
identical exponential lines is considered in this paper. The exact and
explicit expressions for the co- and cross-line reflection and transmission
coefficients are derived. The explicit expressions are validated by an
independent numerical solution.

Index Terms—Coupled transmission lines, distributed parameter cir-
cuits, exponential destributions, scattering matrices.

I. INTRODUCTION

The analysis and various applications of exponential transmission
lines (ETL’s) have been investigated in numerous articles [1]–[4].
Coupled transmission lines have been of continuous interest for
both microwave and power engineering (see [5], [6]). In microwave
engineering, coupled lines have been used as directional couplers,
phase shifters, filters, etc. Coupled nonuniform lines can offer a class
of ultrabroad-band components due to the nature of nonuniformity,
and thus improve the performance. In power engineering, the cou-
pling between lines is, in general, nonuniform due to the complex
geometries (see [7]).

Exact and explicit solutions for special cases are useful in in-
vestigating some possible applications, for the insight they provide,
and as references in establishing benchmarks for general numerical
algorithms. In this paper, one derives the exact and closed-form
solution for the reflection and transmission problem of two coupled
identical exponential lines through a transformation. The explicit
expressions for the co- and cross-line reflection and transmission
coefficients are then validated by a numerical solution.

II. PROBLEM FORMULATION

Consider two coupled transmission lines of finite lengthl between
z = 0 and z = l (see Fig. 1 for the configuration). The equations
for the voltagevk(z) and currentik(z), k = 1; 2, in the frequency-
domain are as follows [for a harmonic time dependenceexp (jwt)]
(see [8]):
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where

L(z) =
L1(z) Lm(z)

Lm(z) L2(z)
; C(z) =

C1(z) �Cm(z)

�Cm(z) C2(z)

(2)

and whereLk(z), Ck(z), k = 1; 2, are, respectively, the self-
inductance and self-capacitance per-unit length at the positionz of
line k in the presence of the other line, andLm(z), Cm(z) are
the mutual inductance and mutual capacitance per-unit length at the
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Fig. 1. Configuration for two coupled nonuniform transmission lines.

positionz, respectively. If the lines are lossless, all these parameters
have real values. If the lines are lossy (i.e., have nonzero shunt
conductance and/or resistance), then some of these parameters may
have complex values. Equation (1) is a first-order linear system of
ordinary differential equations (ODE’s) with inhomogeneous coeffi-
cients. Generally speaking, a linear system of ODE’s witharbitrarily
inhomogeneous coefficients cannot be solved explicitly. Note that the
explicit solution given by Nwoke in [9] for an arbitrarily nonuniform
transmission line is not correct (as pointed out in [4] and [10], the
theorem presented in [9] is incorrect when the system of differential
equations has varying coefficients, which Nwoke was not aware of).

In this paper, the case of two coupled identical ETL’s is considered,
and thus [11]

L(z) =
L0 Lm0

Lm0 L0

e
2qz

C(z) =
C0 �Cm0

�Cm0 C0

e
�2qz

; 0 < z < l (3)

whereL0,C0,Lm0, andCm0 are constants, and the constantq (which
may be either positive or negative) defines the taper of the ETL’s.

It is assumed that each line is connected to two uniform lossless
LC lines at the two ends, and one has

Lk =L00

Ck =C00

Lm =Cm

=0; k = 1; 2; z < 0 (4)

Lk =Ll0

Ck =Cl0

Lm =Cm

=0; k = 1; 2; z > l: (5)

Note that all the parameters may have discontinuities at the endpoint
z = 0 and z = l.

III. I NTERNAL VOLTAGES AND CURRENTS

In this section, a suitable transformation of variables is used which
transforms the system of ODE’s for two coupled ETL’s to a simple
one with constant coefficients.

The following transformation (which comes from the diagonaliza-
tion of the matrixD) are introduced:
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where
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Differentiating (6) with respect toz and using (1), yields
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whereP�1 is the inverse ofP , i.e.,
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After a matrix calculation, one obtains the following system of
equations:
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where the constants

c1=
1

(L+Lm)(C�Cm)
=

1

(L0+Lm0)(C0�Cm0)
(12)

c2=
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1
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: (13)

Note that the system (11) is a first-order linear system of ODE’s with
constantcoefficients.

The system (11) of ODE’s (with constant coefficients) can be
solved in a conventional way [12]. The final result is given as follows:
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where
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(15)

and as shown in (16)–(20) at the bottom of the page.
Therefore, the internal voltages and currents are given by the

following equation:
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IV. REFLECTION AND TRANSMISSION

It is assumed that the excitation voltage is from the left side of
the ETL’s, i.e.,z � 0. The (right-moving) incident voltagevinck ,
k = 1; 2, and the (left-moving) reflected voltagevre
k , k = 1; 2, at
z = 0

� on thekth line are given by [13]
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whereI is the 2� 2 unit matrix. Since there is no left-moving wave
in the regionz > l, one has
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where vtrk , k = 1; 2, is the (right-moving) transmitted voltage at
z = l+ on thekth line.

From (21)–(23) it follows that
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where T�10 is the inverse ofT0, and a, b, m, and n are 2� 2
matrices. After a matrix calculation, one obtains
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The reflection and transmission coefficient matrices are defined as
usual in the following:
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It thus follows from (24) that

r =�n�1m (34)
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Equations (34) and (35) give the exact and explicit solution for
the reflection and transmission problem of two coupled identical
exponential lines [the 2� 2 matricesa, b, m, andn are given by
(25)–(28)].

As expected from the symmetry of the two coupled identical lines,
the reflection and transmission matrices [given by the expressions
(34) and (35)] have the following form:

r =
rco rcross
rcross rco

(36)

t =
tco tcross
tcross tco

(37)

whererco, rcross (tco, tcross) are co- and cross-line reflection (trans-
mission) coefficients, respectively. The physical interpretation of
these quantities is as follows:rco (rcross) is the amplitude of the left-
moving reflected voltage atz = 0

� on a line due to a unit amplitude
of right-moving incident voltage atz = 0

� on the line (or the other
line) with the right-moving incident voltage on the other line put equal
to zero.tco and tcross can be interpreted similarly. These reflection
and transmission coefficients are plotted in Fig. 2, as functions of
the taper parameterq (scaled by 1/l) when C0 = Cl0 = C00,
Cm0 = 0:5C00, L0 = 3L00, Ll0 = 0:8L00, Lm0 = 2L00, and
the frequency! = 0:1=l

p
L00C00. As one can see from Fig. 2,

when jqj becomes large,jrcoj approaches to 1, andjrcrossj, jtcoj,
and jtcrossj approach to 0. The marks in Fig. 2(a) and (b) are the
corresponding co- and cross-line scattering coefficients obtained by
solving (numerically) the ODE’s for the reflection-coefficient matrix
and the Green’s functions [14]. These marks are almost on the
curves in Fig. 2, which show that the explicit solution is consistent
with the numerical results obtained by solving the ODE’s for the
reflection-coefficient matrix and the Green’s functions.

A Special Case:In a very special case whenCm=C = Lm=L

and the terminations are matched (i.e.,L00 = L0, C00 = C0,
Ll0 = L0e

2ql, andCl0 = C0e
�2ql), one hasc2 = c1, �2 = �1,p
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As expected, whenCm = Lm = 0 [and thusZ1(0
+
) = Z2(0

+
)]

the above-mentioned two equations show thatrcross = 0 andrco is
identical to the reflection coefficient for a single ETL [15].
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Fig. 2. The co- and cross-line reflection and transmission coefficients given
by the explicit solutions (49) and (50) for two coupled identical exponential
lines with the parametersC0 = C

l0 = C00, Cm0 = 0:5C00, L0 = 3L00,
L
l0 = 0:8L00, Lm0 = 2L00 and the frequency! = 0:1=l

p
L00C00. The

marks in the figure are the corresponding co- and cross-line scattering coeffi-
cients obtained by solving numerically the ODE’s for the reflection-coefficient
matrix and the Green’s functions.

V. CONCLUSION

The exact and explicit expressions for the co- and cross-line
reflection and transmission coefficients for two coupled identical
exponential lines have been derived. The explicit expressions have
been validated by a numerical solution based on the wave-splitting
technique.
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Operation of New Type Field Displacement
Isolator in Ridged Waveguide

Wen Junding, Wenquan Che, Yongzhong Xiong, and Yongwu Wen

Abstract—A new type ridged-waveguide field-displacement isolator is
analyzed in this paper. Experimental results have been obtained for the
isolation, insert loss, and voltage standing wave ratio (VSWR) inCCC- and
XXX-band. The isolation and bandwidth are found to increase obviously.

Index Terms—Isolator, ridged waveguide.

I. INTRODUCTION

In 1960, Chen [1] proposed the experimental results of resonating
isolator and field displacement isolator in a single ridged waveguide.
He got useful results of the resonating isolator. As to the field
displacement isolator, his experiments were failures. He found “the
forward loss of the field displacement isolator in single ridged wave-
guide became nearly identical with the reverse loss, nonreciprocal
effect was not distinct. Take out the resistance sheet, nonreciprocality
couldn’t be improved� � � .” Based on the study of [2]–[5], the authors
think that Chen’s failure is due to the asymmetry of the single
ridge positioned in the waveguide, which caused asymmetrical field
distribution, and to the spacing of the ridge from the ferrite, which
was so far that the circular polarization field besides the ridge could
not interfere with the magnetized ferrite. According to previous
analysis, the authors propose a new type field displacement isolator
in symmetrical ridged waveguide. The experimental work has shown
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